

Department of Electronics and Communication Engineering

Sub Code/Name: BEC5L1- DIGITAL SIGNAL PROCESSING
LABORATORY

Name : ……………………………………

Reg No : ……………………………………

Branch : ……………………………………

Year & Semester : ……………………………………

LIST OF EXPERIMENTS

Sl No Experiments Page No

1 Waveform generation

2 Sampling and its effect on aliasing

3 Linear and circular convolution

4 DFT computation

5 Fast Fourier transforms

6 FIR Filters Implementation

7 IIR Filters Implementation

8 Quantisation Noise.

9 Multirate Signal Processing

10 DSP processor implementation

INDEX

Expt. Expt. Name of the Experiment Marks Staff SIGN

Ex No:1(a)

Date:

WAVEFORM GENERATION

CONTINUOUS TIME SIGNAL
Aim
To Generate a continuous sinusoidal time signals Using MATLAB.

Requirements

Matlab 2007 SOFTWARE

Procedure

1. OPEN MATLAB

2. File New Script.
a. Type the program in untitled window

3. File Save type filename.m in matlab workspace path
4. Debug Run. Wave will displayed at Figure dialog box.

Theory

Common Periodic Waveforms

The toolbox provides functions for generating widely used periodic waveforms:sawtooth
generates a sawtooth wave with peaks at ±1 and a period of 2π. An optional width parameter
specifies a fractional multiple of 2π at which the signal's maximum occurs. square generates a
square wave with a period of 2π. An optional parameter specifies duty cycle, the percent of
the period for which the signal is positive.

Common Aperiodic Waveforms

The toolbox also provides functions for generating several widely used aperiodic waveforms:
gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified time, center
frequency, and fractional bandwidth. Optional parameters return in-phase and Quadrature
pulses, the RF signal envelope, and the cutoff time for the trailing pulse envelope. chirp
generates a linear, log, or quadratic swept-frequency cosine signal. An optional parameter
specifies alternative sweep methods. An optional parameter phi allows initial phase to be
specified in degrees.

Program %

% Assuming The Sampling frequency is 5 Mhz

clc; clear all;
clear all; Finput = 1000;
t = 0:0.0005:1; Fsampling = 5000000;

a = 10 Tsampling = 1 / Fsampling;
f = 13; Nsample = Fsampling/ Finput;

xa = a*sin(2*pi*f*t); N = 0:5*Nsample-1;
subplot(2,1,1) x=sin(2 * pi * Finput * Tsampling * N);

plot(t,xa);grid plot(x); title('Sine Wave Generation');
xlabel('Time, msec');

xlabel('Time -- >');
ylabel('Amplitude');

ylabel('Amplitude-- >');
title('Continuous-time signal x_{a}(t)');

grid on;
axis([0 1 -10.2 10.2])

Result:

Thus the Continuous Time Signal was generated using MATLAB.

Ex No:1(b)

Date:

 DISCRETE TIME SIGNAL

Aim

To Generate a Discrete time Exponential signals Using MATLAB.

Requirements

Matlab 2007

Personal computer

Procedure

1. OPEN MATLAB
2. File New Script.

a. Type the program in untitled window

3. File Save type filename.m in matlab workspace path

4. Debug Run. Wave will displayed at Figure dialog box.

Theory:

Program

clear all;

a =
10;
f =
13;
T =
0.01;
n =
0:T:1;

xs =
a*sin(2*pi*f*n); k
= 0:length(n)-1;
stem(k,xs);
grid
xlabel('Time index n');
ylabel('Amplitude');
title('Discrete-time signal
x[n]'); axis([0 (length(n)-1) -
10.2 10.2])

Expected Graph:

Result

Thus the Discrete Time Signal was generated using MATLAB.

Ex No:2

Date:

SAMPLING AND EFFECT OF ALIASING

Aim
To perform a Sampling and effect of aliasing Using MATLAB.
Requirements
Matlab 2007 later

Procedure
1. OPEN MATLAB

2. File New Script.
a. Type the program in untitled window
3. File Save type filename.m in matlab workspace path

4. DebugRun. Wave will displayed at Figure dialog box.

Program
clc;
close
all;
clear
all;

t1=0:.0005:.5115;
Hz 1=(2000/2)*(0: 1024/2) / (lO24/2);
xl=sin(2*pi*550*tl);
Xl=abs(fft(xl)):
 Xl(514:1024)=[];
subplot(211) ;

plot(tl(1:64),xl(1 :64));
subplot(212);
plot(Hz 1 ,Xl);
(Fig. 2 shows MATLAB plots for xl and Xl)

t2=0:.00l:1.023;
Hz2=(1000/2)*(0: 1024/2) / (lO24/2);
x2=sin(2*pi * 550*t2);
X2=abs(fft(x2));
X2(514:1024)=[];
subplot(21l);
plot(t2(1 :256),x2(1:256));
 subplot(212);
plot(Hz2,X2);
(Fig . 3 shows MATLAB plots for x2 and X2)

The Fourier expansion contains only odd harmonics, the amplitude of which drop as l/n
(where n=harmonic #) and is infinite. This means that inherently any representation of a
square wave by a discrete sequence will result in aliasing. To illustrate this using MATLAB,
we synthesize a square wave, compute and plot the magnitude of its FFT and compare the
results to the predicted aliased components. We will synthesize a 30Hz square wave with
50% duty cycle, consisting of 1024 points, sampled at a frequency of 1000Hz. The following
are the commands in MATLAB needed to synthesize a square wave, compute its FFT and
plot the results:

x=square(2*pi*30*t2,50);
X=abs(fft(x));
X(514:1024)=[];
plot(Hz2,X);
where t2 and Hz2 are those generated in the previous example and "square" is a

command from the Signal Processing Toolbox .

Result:

Thus the Sampling was performed and studied the aliasing effect using MATLAB.

Ex No:3(a)

Date:

LINEAR AND CIRCULAR CONVOLUTION

(LINEAR CONVOLUTION)

Aim
To perform a Linear Convolution Using MATLAB.

Requirements
Matlab 2007 later

Procedure

1. OPEN MATLAB

2. File New Script.

a. Type the program in untitled window
3. File Save type filename.m in matlab workspace path

4. DebugRun. Wave will displayed at Figure dialog box.

Program

% Program for linear convolution of the sequence x5[1, 2] and h5[1, 2, 4]

clc;
clear
all;
close
all;
x=input('enter the 1st sequence');
h=input('enter the 2nd sequence');
y=conv(x,h);
figure;
subplot(3,1,1);
stem(x);
 ylabel('Amplitude --.');
xlabel('(a) n --.');
title('first sequence');
 subplot(3,1,2);
stem(h);
ylabel('Amplitude --.');
 xlabel('(b) n --.');
title('Second sequence');
subplot(3,1,3);
stem(y);
ylabel('Amplitude --.');
xlabel('(c) n --.');
title('Convoluted sequence');
disp('The resultant signal is');

Output:
enter the 1st sequence [1 2]
enter the 2nd sequence [1 2 4]
 The resultant signal is
Y= 1 4 8 8
EXPECTED GRAPHS:

Result

Thus the Linear convolution was performed using MATLAB.

Ex No:3(b)

Date:

CIRCULAR CONVOLUTION

Aim

To perform a Circular Convolution Using MATLAB.

Requirements

Matlab 2007 later

Procedure

1. OPEN MATLAB

2. File New Script.
a. Type the program in untitled window
3. File Save type filename.m in matlab workspace path

4. Debug Run. Wave will displayed at Figure dialog box.

Program

clc; clear all;
a = input(enter the sequence x(n) = ‟);
b = input(„enter the sequence h(n) = ‟);
n1=length(a);
n2=length(b);
N=max(n1,n2);
x = [a zeros(1,(N-n1))];
for i = 1:N
k = i;
for j = 1:n2 H(i,j)=x(k)* b(j);
 k = k-1;
if (k == 0) k = N;
end
end
end
y=zeros(1,N);
M=H‟;for j = 1:N for i = 1:n2
y(j)=M(i,j)+y(j);
end
end
disp(„The output sequence is y(n)= „);
 disp(y);
stem(y);
title(„Circular Convolution‟);
 xlabel(„n‟);
ylabel(‚y(n)„);
OUTPUT:
enter the sequence x(n) = [1 2 4]
enter the sequence h(n) = [1 2]
The output sequence is y(n)= 9 4 8

% Program for Computing Circular Convolution with zero padding

clc;
close all;

clear all;
x=input('enter the first sequence');
h=input('enter the 2nd sequence');
y=x'*h;
n1=length(x);
n2=length(h);
figure subplot(3,1,1) stem(x);
title('Input sequence');
xlabel('n1');
ylabel('x(n1)');
subplot(3,1,2) stem(h);
title('Impulse sequence');
xlabel('n2');
ylabel('h(n2)');
n=n1+n2-1;
c=zeros(n);
 for i=1:n1

for j=1:n2 c(i+j-1)=c(i+j-1)+y(i,j);
end
end

for i=1:n d(i)=c(i,1);
end
disp('convoluted sequence');
disp(d);
n3=1:n;
subplot(3,1,3) stem(n3-1,c);
title('Convoluted sequence');
xlabel('time');
ylabel('Amplitude');

OUTPUT:
enter the first sequence [1 2 4]
enter the 2nd sequence [1 2]
The resultant signal is y=1 4 8 8

Result
Thus the Circular convolution was performed using MATLAB.

Ex No:4

Date:

 DISCRETE FOURIER TRANSFORM (DFT) COMPUTATIONS

AIM : To find the Discrete Fourier Transform of a sequence.

SOFTWARE REQUIRED : MAT LAB 7.0

PROGRAM DESCRIPTION : In this program the Discrete Fourier Transform
(DFT) of a sequence x[n] is generated by using the formula,
 N-1

X(k) = Σ x(n) e-2πjk / N Where, X(k) DFT of sequence x[n]
 n=0
N represents the sequence length and it is calculated by using the command ‘length’. The
DFT of any sequence is the powerful computational tool for performing frequency analysis of
discrete-time signals.

MATLAB CODE :
clc;
clear all;
close all;
a=input('Enter the sequence :');
N=length(a);
disp('The length of the sequence is:');N
for k=1:N
 y(k)=0;
 for i=1:N
 y(k)=y(k)+a(i)*exp((-2*pi*j/N)*((i-1)*(k-1)));
 end;
end;
k=1:N
disp('The result is:');y
figure(1);
subplot(211);
stem(k,abs(y(k)));
grid;
xlabel('sample values n-->');
ylabel('Amplitudes-->');
title('Mangnitude response of the DFT of given sequence');
subplot(212);
stem(angle(y(k))*180/pi);
grid;
xlabel('sample values n-->');
ylabel('phase-->');
title('Phase response of the DFT of given sequence');

OUTPUTS:
Enter the sequence : [1 2 3 4]
The length of the sequence is: N = 4
k = 1 2 3 4
The result is: y = 10.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i

GRAPHS :

INFERENCE : To perform the frequency analysis on a discrete-time signal x[n] can be
generated from a continuous signal x(t). Here in the program y(k) refers to the DFT of the
sequence a. The DFT consists of two parts. The magnitude and phase angle of x(k) are
calculated by using abs and angle commands and plotted using stem command.

RESULT : The Discrete Fourier Transform (DFT) of a sequence is obtained and response is
plotted.

Ex No:5

Date:

1 1.5 2 2.5 3 3.5 4
0

5

10

sample values n-->

A
m

pl
itu

de
s-

->
Mangnitude response of the DFT of given sequence

1 1.5 2 2.5 3 3.5 4
-200

-100

0

100

200

sample values n-->

ph
as

e-
->

Phase response of the DFT of given sequence

FINDING THE FFT OF DIFFERENT SIGNALS

AIM : To find the FFT of different signals like impulse, step, ramp and exponential.

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: In this program using the command FFT for impulse, step,
ramp and exponential sequences the FFT is generated. In the process of finding the FFT the
length of the FFT is taken as N. The FFT consists of two parts: MAGNITUDE PLOT and
PHASE PLOT. The magnitude plot is the absolute value of magnitude versus the samples
and the phase plot is the phase angle versus the samples.

MATLAB CODE:

% FFT of the impulse sequence : magnitude and phase response
clc;
clear all;
close all;
 %impulse sequence
 t=-2:1:2;
 y=[zeros(1,2) 1 zeros(1,2)];
 subplot (3,1,1);
 stem(t,y);
 grid;
 input('y=');
 disp(y);
 title ('Impulse Response');
 xlabel ('time -->');
 ylabel ('--> Amplitude');
 xn=y;
 N=input('enter the length of the FFT sequence: ');
 xk=fft(xn,N);
 magxk=abs(xk);
 angxk=angle(xk);
 k=0:N-1;
 subplot(3,1,2);
 stem(k,magxk);
 grid;
 xlabel('k');
 ylabel('|x(k)|');
 subplot(3,1,3);
 stem(k,angxk);
 disp(xk);
 grid;
 xlabel('k');
 ylabel('arg(x(k))');

OUTPUTS:

y= 0 0 1 0 0

enter the length of the FFT sequence: 10

 1.0000 0.3090 - 0.9511i -0.8090 - 0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i
 1.0000 0.3090 - 0.9511i -0.8090 - 0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i

GRAPHS:

% FFT of the step sequence : magnitude and phase response
clc;
clear all;
close all;
 %Step Sequence
 s=input ('enter the length of step sequence');
 t=-s:1:s;
 y=[zeros(1,s) ones(1,1) ones(1,s)];
 subplot(3,1,1);
 stem(t,y);
 grid
 input('y=');
 disp(y);
 title ('Step Sequence');
 xlabel ('time -->');
 ylabel ('--> Amplitude');
 xn=y;
 N=input('enter the length of the FFT sequence: ');
 xk=fft(xn,N);
 magxk=abs(xk);

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1
Impulse Response

time -->

-->
 A

m
pl

itu
de

0 1 2 3 4 5 6 7 8 9
0

0.5

1

k

|x
(k

)|

0 1 2 3 4 5 6 7 8 9
-5

0

5

k

ar
g(

x(
k)

)

 angxk=angle(xk);
 k=0:N-1;
 subplot(3,1,2);
 stem(k,magxk);
 grid
 xlabel('k');
 ylabel('|x(k)|');
 subplot(3,1,3);
 stem(k,angxk);
 disp(xk);
 grid
 xlabel('k');
 ylabel('arg(x(k))');

OUTPUTS:
enter the length of step sequence: 5
y= 0 0 0 0 0 1 1 1 1 1 1

enter the length of the FFT sequence: 10
5.0000 -1.0000 + 3.0777i 0 -1.0000 + 0.7265i 0 -1.0000 0
 -1.0000 - 0.7265i 0 -1.0000 - 3.0777i

GRAPHS:

% FFT of the Ramp sequence: magnitude and phase response

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1
Step Sequence

time -->

-->
 A

m
pl

itu
de

0 1 2 3 4 5 6 7 8 9
0

5

k

|x
(k

)|

0 1 2 3 4 5 6 7 8 9
-5

0

5

k

ar
g(

x(
k)

)

clc;
clear all;
close all;
 %Ramp Sequence
 s=input ('enter the length of Ramp sequence: ');
 t=0:s;
 y=t
 subplot(3,1,1);
 stem(t,y);
 grid
 input('y=');
 disp(y);
 title ('ramp Sequence');
 xlabel ('time -->');
 ylabel ('--> Amplitude');
 xn=y;
 N=input('enter the legth of the FFT sequence: ');
 xk=fft(xn,N);
 magxk=abs(xk);
 angxk=angle(xk);
 k=0:N-1;
 subplot(3,1,2);
 stem(k,magxk);
 grid
 xlabel('k');
 ylabel('|x(k)|');
 subplot(3,1,3);
 stem(k,angxk);
 disp(xk);
 grid
 xlabel('k');
 ylabel('arg(x(k))');

OUTPUTS:
enter the length of Ramp sequence: 5
y = 0 1 2 3 4 5

enter the length of the FFT sequence: 10
15.0000 -7.7361 - 7.6942i 2.5000 + 3.4410i -3.2639 - 1.8164i 2.5000 + 0.8123i
-3.0000 2.5000 - 0.8123i -3.2639 + 1.8164i 2.5000 - 3.4410i -7.7361 + 7.6942i

GRAPHS:

% FFT of the Exponential Sequence : magnitude and phase response

clc;
clear all;
close all;
%exponential sequence
n=input('enter the length of exponential sequence: ');
t=0:1:n;
a=input('enter "a" value: ');
y=exp(a*t);
input('y=')
disp(y);
subplot(3,1,1);
stem(t,y);
grid;
title('exponential response');
xlabel('time');
ylabel('amplitude');
 disp(y);
 xn=y;
 N=input('enter the length of the FFT sequence: ');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
ramp Sequence

time -->

-->
 A

m
pl

itu
de

0 1 2 3 4 5 6 7 8 9
0

10

20

k

|x
(k

)|

0 1 2 3 4 5 6 7 8 9
-5

0

5

k

ar
g(

x(
k)

)

 xk=fft(xn,N);
 magxk=abs(xk);
 angxk=angle(xk);
 k=0:N-1;
 subplot(3,1,2);
 stem(k,magxk);
 grid;
 xlabel('k');
 ylabel('|x(k)|');
 subplot(3,1,3);
 stem(k,angxk);
 grid;
 disp(xk);
 xlabel('k');
 ylabel('arg(x(k))');

OUTPUTS:
enter the length of exponential sequence: 5

enter "a" value: 0.8
y= 1.0000 2.2255 4.9530 11.0232 24.5325 54.5982

enter the length of the FFT sequence: 10

98.3324 -73.5207 -30.9223i 50.9418 +24.7831i -41.7941 -16.0579i
38.8873 + 7.3387i -37.3613 38.8873 - 7.3387i -41.7941 +16.0579i 50.9418
-24.7831i -73.5207 +30.9223i

GRAPHS :

INFERENCE : The FFT for impulse, step, ramp and exponential sequences is generated
using the FFT command. The magnitude plot is the absolute value of magnitude versus the
samples and the phase plot is the phase angle versus the samples is plotted for different
signals for different values. This program is very simple and requires defining the signal and
finding FFT and plotting.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100
exponential response

time

am
pl

itu
de

0 1 2 3 4 5 6 7 8 9
0

50

100

k

|x
(k

)|

0 1 2 3 4 5 6 7 8 9
-5

0

5

k

ar
g(

x(
k)

)

RESULT : The FFT of different signals like impulse, step, ramp and exponential is found
and the magnitude and phase plots of the same is plotted.

Ex No:6

Date:

IMPLEMENTATION OF LP & HP FIR FILTER FOR A GIVEN SEQUENCE
(USING WINDOWING TECHNIQUES)

AIM: To implement the FIR filter for a given sequence by using windowing techniques.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: A Finite Impulse Response (FIR) filter is a discrete linear
time-invariant system whose output is based on the weighted summation of a finite number of
past inputs.

An FIR transversal filter structure can be obtained directly from the equation for discrete-
time convolution.
 N-1
y [n] =Σ X(k) h(n-k) 0< n< N-1
 k=0

In this equation, x(k) and y(n) represent the input to and output from the filter at time n. h(n-
k) is the transversal filter coefficients at time n. These coefficients are generated by using
FDS (Filter Design Software or Digital filter design package).

FIR – filter is a finite impulse response filter. Order of the filter should be specified.
Infinite response is truncated to get finite impulse response. Placing a window of finite length
does this. Types of windows available are Rectangular, Barlett, Hamming, Hanning,
Blackmann window etc. This FIR filter is an all zero filter.

MATLAB CODE:

clc;
clear all;
close all;
rp=input('enter passband ripple');
rs=input('enter the stopband ripple');
fp=input('enter passband freq');
fs=input('enter stopband freq');
f=input('enter sampling freq ');
wp=2*fp/f;
ws=2*fs/f;
num=-20*log10(sqrt(rp*rs))-13;
dem=14.6*(fs-fp)/f;
n=ceil(num/dem);
n1=n+1;
if(rem(n,2)~=0)
n1=n;
n=n-1;
end
c=input('enter your choice of window function 1. rectangular 2. triangular 3.kaiser: \n ');
if(c==1)
y=rectwin(n1);
disp('Rectangular window filter response');
end
if (c==2)
y=triang(n1);
disp('Triangular window filter response');
end
if(c==3)
y=kaiser(n1);
disp('kaiser window filter response');
end
%LPF
b=fir1(n,wp,y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,1,1);plot(o/pi,m);
title('LPF');
ylabel('Gain in dB-->');
xlabel('(a) Normalized frequency-->');

%HPF
b=fir1(n,wp,'high',y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,1,2);plot(o/pi,m);
title('HPF');
ylabel('Gain in dB-->');
xlabel('(b) Normalized frequency-->');

USING RECTANGULAR WINDOW
OUTPUT:

enter passband ripple0.02
enter the stopband ripple0.01
enter passband freq1000
enter stopband freq1500
enter sampling freq 10000
enter your choice of window function 1. rectangular 2. triangular 3.kaiser:
 1
Rectangular window filter response
GRAPH:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50
LPF

G
ai

n
in

 d
B

-->

(a) Normalized frequency-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20
HPF

G
ai

n
in

 d
B

-->

(b) Normalized frequency-->

USING TRIANGULAR WINDOW

OUTPUT:

enter passband ripple0.02
enter the stopband ripple0.01
enter passband freq1000
enter stopband freq1500
enter sampling freq 10000
enter your choice of window function 1. rectangular 2. triangular 3.kaiser:
 2
Triangular window filter response

GRAPH:

USING KAISER WINDOW
OUTPUT:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0
LPF

G
ai

n
in

 d
B

-->

(a) Normalized frequency-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0
HPF

G
ai

n
in

 d
B

-->

(b) Normalized frequency-->

enter passband ripple0.02
enter the stopband ripple0.01
enter passband freq1000
enter stopband freq1500
enter sampling freq 10000
enter your choice of window function 1. rectangular 2. triangular 3.kaiser:
 3
kaiser window filter response
GRAPH:

INFERENCE: This program requires certain specifications about the pass band and stop
band ripple & frequencies and the sampling frequency. Here we have used a function called
‘fir1’ in order to design a Nth order Low pass and a High pass filter. This function returns the
filter coefficients in length N+1 vector b. The cutoff frequency ‘wp’ must be between 0 <
wp < 1.0 , with 1.0 corresponding to half the sampling rate.

Based up on the choice of available windowing functions, the filter response is generated.

RESULT: The LP and HP FIR Filter response for the given sequence is generated based
upon the choice of the windowing function and the filter characteristics are plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50
LPF

G
ai

n
in

 d
B

-->

(a) Normalized frequency-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20
HPF

G
ai

n
in

 d
B

-->

(b) Normalized frequency-->

Ex No:7(A)

Date:

IMPLEMENTATION OF IIR LP FILTER FOR A GIVEN SEQUENCE

AIM: To design and implement IIR (LPF) filters for a given sequence.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: The IIR filter can realize both the poles and zeroes of a
system because it has a rational transfer function, described by polynomials in z in both the
numerator and the denominator:
 M

H(z) = Σ bk z-k

 k=0_________

 M

 Σ ak z-k
 k=0

The difference equation for such a system is described by the following:
 M N

Y(n)= bk x(n-k) ak y(n-k)
 k=0 k=1

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter
coefficients are generated using FDS (Filter Design software or Digital Filter design
package).
IIR filters can be expanded as infinite impulse response filters. In designing IIR filters, cutoff
frequencies of the filters should be mentioned. The order of the filter can be estimated using
butter worth polynomial. That’s why the filters are named as butter worth filters. Filter
coefficients can be found and the response can be plotted.

MATLAB CODE:

clc;
clear all;
close all;
disp('enter the IIR filter design specifications');
rp=input('enter the passband ripple');
rs=input('enter the stopband ripple');
wp=input('enter the passband freq');
ws=input('enter the stopband freq');
fs=input('enter the sampling freq');
w1=2*wp/fs;
w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s');
disp('Frequency response of IIR LPF is:');
[b,a]=butter(n,wn,'low','s');
w=0:.01:pi;

[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
figure,subplot(2,1,1);
plot(om/pi,m);
title('magnitude response of IIR LP filter is:');
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->');
subplot(2,1,2);
plot(om/pi,an);
title('phase response of IIR LP filter is:');
xlabel('(b) Normalized freq. -->');
ylabel('Phase in radians-->');
OUTPUT:
enter the IIR filter design specifications
enter the passband ripple0.15
enter the stopband ripple60
enter the passband freq1500
enter the stopband freq3000
enter the sampling freq7000
Frequency response of IIR LPF is:
GRAPHS:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-200

-100

0

100
magnitude response of IIR LP filter is:

(a) Normalized freq. -->

G
ai

n
in

 d
B

-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4
phase response of IIR LP filter is:

(b) Normalized freq. -->

P
ha

se
 in

 ra
di

an
s-

->

INFERENCE: This program requires certain specifications about the pass band and stop
band ripple & frequencies and the sampling frequency. Here we have used a function called
‘[n,wn]=buttord(w1,w2,rp,rs,'s')’ in order to find the lowest order N of digital butterworth
filter that loses no more than ‘rp’ db in the pass band and has at least ‘rs’ db of attenuation
in the stop band . w1 and w2 are the pass band and stop band edge frequencies, normalized
from 0 to 1.

The function ‘butter’ designs a Nth order low pass digital butterworth filter and returns the
filter coefficients in length N+1 vectors B(numerator) and A (denominator).

RESULT: The LP IIR Filter response for the given sequence is generated and the filter
characteristics are plotted.

Ex No:7(B)

Date:

IMPLEMENTATION OF IIR HP FILTER FOR A GIVEN SEQUENCE

AIM: To design and implement IIR (HPF) filters for a given sequence.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: The IIR filter can realize both the poles and zeroes of a
system because it has a rational transfer function, described by polynomials in z in both the
numerator and the denominator:
 M

H(z) = Σ bk z-k

 k=0_________

 M

 Σ ak z-k
 k=0

The difference equation for such a system is described by the following:
 M N

Y(n)= bk x(n-k) ak y(n-k)
 k=0 k=1

M and N are order of the two polynomials bk and ak are the filter coefficients. These filter
coefficients are generated using FDS (Filter Design software or Digital Filter design
package).
IIR filters can be expanded as infinite impulse response filters. In designing IIR filters, cutoff
frequencies of the filters should be mentioned. The order of the filter can be estimated using
butter worth polynomial. That’s why the filters are named as butter worth filters. Filter
coefficients can be found and the response can be plotted.

MATLAB CODE:

clc;
clear all;
close all;
disp('enter the IIR filter design specifications');
rp=input('enter the passband ripple');
rs=input('enter the stopband ripple');
wp=input('enter the passband freq');
ws=input('enter the stopband freq');
fs=input('enter the sampling freq');
w1=2*wp/fs;
w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s');
disp('Frequency response of IIR HPF is:');
[b,a]=butter(n,wn,'high','s');
w=0:.01:pi;
[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
figure,subplot(2,1,1);
plot(om/pi,m);
title('magnitude response of IIR HP filter is:');
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->');
subplot(2,1,2);
plot(om/pi,an);
title('phase response of IIR HP filter is:');
xlabel('(b) Normalized freq. -->');
ylabel('Phase in radians-->');
OUTPUT:
enter the IIR filter design specifications
enter the passband ripple0.15
enter the stopband ripple60
enter the passband freq1500
enter the stopband freq3000
enter the sampling freq7000
Frequency response of IIR HPF is:

GRAPHS:

INFERENCE: This program requires certain specifications about the pass band and stop

band ripple & frequencies and the sampling frequency. Here we have used a function called

‘[n,wn]=buttord(w1,w2,rp,rs,'s')’ in order to find the lowest order N of digital butterworth

filter that loses no more than ‘rp’ db in the pass band and has at least ‘rs’ db of attenuation

in the stop band . w1 and w2 are the pass band and stop band edge frequencies, normalized

from 0 to 1.

The function ‘butter’ designs a Nth order high pass digital butterworth filter and returns the

filter coefficients in length N+1 vectors B (numerator) and A (denominator).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200
magnitude response of IIR HP filter is:

(a) Normalized freq. -->

G
ai

n
in

 d
B

-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4
phase response of IIR HP filter is:

(b) Normalized freq. -->

P
ha

se
 in

 ra
di

an
s-

->

RESULT: The HP IIR Filter response for the given sequence is generated and the filter
characteristics are plotted.

Ex No:8(a)

Date:

QUANTIZATION OF NOISE
(Quantization of Gaussian Noise Signal)

AIM: To compute Quantization of Gaussian Noise Signal for a given signal.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION:
t=0:0.1:4*pi;
fprintf('Exp\t\tTh\t\tMean\t\tVar\n');
for n=4:4:16,

 x=randn(1,length(t));
 xd=round(x*2^(n-1))/2^(n-1);
 error=xd-x;
 error_mean=mean(abs(error));
 error_variance=var(error);
 figure; plot(t,x,t,xd,t,error)
 legend('x','xd','error')
 SQNR=10*log10(sum(x.^2)/sum(error.^2));
 SQNR_eqn=1.76+6.02*n;
 title(strcat(num2str(n),' bits. SQNR=',num2str(SQNR),'
dB.')) fprintf('%0.4f\t%0.4f\t%0.3e\t%0.3e\n',SQNR,SQNR_eqn,error_mean,erro
r_variance);
end

Bits Experimental
SQNR (dB)

Mean
Quantization

Noise

Variance in
Quantization

Noise
4 29.1933 3.22E-02 1.34E-03
8 52.0926 1.86E-03 4.82E-06
12 77.1105 1.23E-04 1.99E-08
16 101.1026 7.33E-06 7.52E-11

RESULT:

Thus the Quantization of Gaussian Noise Signal was computed for a given signal.

Ex No:8(b)

Date:

Quantization of Sinusoidal Signal with Gaussian Random Noise

AIM: To compute Quantization of Sinusoidal Signal with Gaussian Random Noise
for a given signal.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION:

t=0:0.1:4*pi;
fprintf('SNR\t\tExp\t\tTh\t\tMean\n');
for n=4:4:16,
 x_original=sin(t);
 noise=randn(1,length(t))./sqrt(200);
 x=x_original+noise;
 xd_original=round(x_original*2^(n-1))/2^(n-1);
 xd=round(x*2^(n-1))/2^(n-1);
 error_original=xd_original-x_original;
 error=xd-x;
 error_mean=mean(abs(error));
 figure; plot(t,x,t,xd,t,error)
 legend('x','xd','error')
 SNR=10*log10(sum(x.^2)/(sum(error.^2)+sum(noise.^2)));
 SQNR=10*log10(sum(x.^2)/(sum(error.^2)));

 SQNR_eqn=1.76+6.02*n;
 title(strcat(num2str(n),' bits. SNR=',num2str(SNR),'
dB.')) fprintf('%0.4f\t%0.4f\t%0.4f\t%0.3e\n',SNR,SQNR,SQNR_eqn,error_me
an);
end

Bits Experimental
SNR (dB)

Experimental
SQNR (dB)

Theoretical
SQNR (dB)

Mean
Quantization

Noise
4 19.0702 29.1933 25.84 3.22E-02
8 19.7978 52.0926 49.92 1.86E-03

12 19.646 77.1105 74 1.23E-04
16 19.4478 101.1026 98.08 7.33E-06

RESULT:

Thus Quantization of Sinusoidal Signal with Gaussian Random Noise was computed
for a given signal.

ARCHITECTURE OF DSP CHIPS – TMS
320 C5X16X INSTRUCTION

EQUIPMENT REQUIRED: DSP Hardware Kit- DSK C6713

THEORY: The C6713 DSK pin has the following features

1. Code Composer communicates with the DSK through an embedded JTAG emulator with

a USB host interface.

2. The DSK can also be used with an external emulator through the external JTAG connector.

TMS320C6713 DSP Features

 Highest-Performance Floating-Point Digital Signal Processor (DSP):
 Eight 32-Bit Instructions/Cycle
 32/64-Bit Data Word
 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

 3.3-, 4.4-, 5-, 6-Instruction Cycle Times
 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS
 Rich Peripheral Set, Optimized for Audio
 Highly Optimized C/C++ Compiler
 Extended Temperature Devices Available

 Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core
 Eight Independent Functional Units:

 Two ALUs (Fixed-Point)
 Four ALUs (Floating- and Fixed-Point)
 Two Multipliers (Floating- and Fixed-Point)

 Load-Store Architecture With 32 32-Bit General-Purpose Registers
 Instruction Packing Reduces Code Size
 All Instructions Conditional

 Instruction Set Features
 Native Instructions for IEEE 754

 Single- and Double-Precision

Byte-Addressable (8-, 16-, 32-Bit Data)

 8-Bit Overflow Protection
 Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization

 L1/L2 Memory Architecture
 4K-Byte L1P Program Cache (Direct-Mapped)
 4K-Byte L1D Data Cache (2-Way)

 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-
Byte Additional L2 Mapped RAM

TMS320C6713 DSK Overview Block Diagram

Device Configuration

 Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot
 Endianness: Little Endian, Big Endian

 32-Bit External Memory Interface (EMIF)
 Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM
 512M-Byte Total Addressable External Memory Space

 Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)
 16-Bit Host-Port Interface (HPI)
 Two Multichannel Audio Serial Ports (McASPs)

 Two Independent Clock Zones Each (1 TX and 1 RX)
 Eight Serial Data Pins Per
 Port:

Individually Assignable to any of the Clock Zones
 Each Clock Zone Includes:

 Programmable Clock Generator
 Programmable Frame Sync Generator
 TDM Streams From 2-32 Time Slots
 Support for Slot
 Size:

8, 12, 16, 20, 24, 28, 32 Bits
 Data Formatter for Bit Manipulation

 Wide Variety of I2S and Similar Bit Stream Formats
 Integrated Digital Audio Interface Transmitter (DIT) Supports:

 S/PDIF, IEC60958-1, AES-3, CP-430 Formats
 Up to 16 transmit pins
 Enhanced Channel Status/User Data

 Extensive Error Checking and Recovery

 Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces
 Two Multichannel Buffered Serial Ports:

 Serial-Peripheral-Interface (SPI)
 High-Speed TDM Interface

 AC97

Two 32-Bit General-Purpose Timers
 Dedicated GPIO Module With 16 pins (External Interrupt Capable)
 Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module

 IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
 Package Options:

 208-Pin Power PAD™ Plastic (Low-Profile) Quad Flat pack (PYP)
 272-BGA Packages (GDP and ZDP)

 0.13-µm/6-Level Copper Metal Process
 CMOS Technology

 3.3-V I/Os, 1.2 -V Internal (GDP & PYP)
 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only)

Ex No:9(a)

Date:

MULTIRATE SIGNAL PROCESSING
(PROGRAM TO VERIFY DECIMATION)

AIM: To verify Decimation and Interpolation of a given Sequences

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: The sampling rate alteration that is employed to generate a
new sequence with a sampling rate lower than that of a given sequence. Thus, if x[n] is a
sequence with a sampling rate of FT Hz and it is used to generate another sequence y[n] with
a desired sampling rate of FT

' Hz, then the sampling rate alteration ratio is given by FT
' / FT =

R.

If R < 1, the sampling rate is decreased by a process called decimation and it results in a
sequence with a lower sampling rate.

The decimation can be carried out by using the pre-defined commands decimate.

MATLAB CODE:
% DECIMATION
clc;
clear all;
close all;
disp('Let us take a sinusoidal sequence which has to be decimated: ');
fm=input('Enter the signal frequency fm: ');
fs=input('Enetr the sampling frequnecy fs: ');
T=input('Enter the duration of the signal in seconds T: ');
dt=1/fs;
t=dt:dt:T
M=length(t);
m=cos(2*pi*fm*t);
r=input('Enter the factor by which the sampling frequency has to be reduced r: ');
md=decimate(m,r);
figure(1);
subplot(3,1,1);
plot(t,m);
grid;
xlabel('t-->');
ylabel('Amplitude-->');
title('Sinusoidal signal before sampling');
subplot(3,1,2);
stem(m);
grid;
xlabel('n-->');
ylabel('Amplitudes of m -->');
title('Sinusoidal signal after sampling before decimation');

subplot(3,1,3);
stem(md);
grid;
title('Sinusoidal after decimation');
xlabel('n/r-->');
ylabel('Amplitude of md-->');

OUTPUT:
Let us take a sinusoidal sequence which has to be decimated:
Enter the signal frequency fm: 2
Enetr the sampling frequnecy fs: 100
Enter the duration of the signal in seconds T: 1
Enter the factor by which the sampling frequency has to be reduced r: 2

GRAPHS:

INFERENCE : The only constraint about the program is that the factors of decimation or
interpolation should be an integers. If we want to change the sampling frequency by a factor
which is not an integer it can be done by using the command resample by which we can
change the sampling rate by a factor I / D. For this we have to interpolate by an integer factor
I and then decimate by an integer factor D

RESULT : The Decimation of given sequences is verified and graphs are plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

t-->

A
m

pl
itu

de
-->

Sinusoidal signal before sampling

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

n-->A
m

pl
itu

de
s

of
 m

 --
> Sinusoidal signal after sampling before decimation

0 5 10 15 20 25 30 35 40 45 50
-1

0

1
Sinusoidal after decimation

n/r-->A
m

pl
itu

de
 o

f m
d-

->

Ex No:9(b)

Date:

PROGRAM TO VERIFY INTERPOLATION

AIM: To verify Interpolation of a given Sequence.

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: The sampling rate alteration that is employed to generate a
new sequence with a sampling rate higher than that of a given sequence. Thus, if x[n] is a
sequence with a sampling rate of FT Hz and it is used to generate another sequence y[n] with
a desired sampling rate of FT

' Hz, then the sampling rate alteration ratio is given by FT
' / FT =

R.

If R > 1, the process is called interpolation and results in a sequence with a higher sampling
rate.

The interpolation can be carried out by using the pre-defined command interp respectively.

MATLAB CODE:

 %INTERPOLATION
clc;
clear all;
close all;
disp('Let us take a sinusoidal sequence which has to be interpolated: ');
fm=input('Enter the signal frequency fm: ');
fs=input('Enetr the sampling frequnecy fs: ');
T=input('Enter the duration of the signal in seconds T: ');
dt=1/fs;
t=dt:dt:T
M=length(t);
m=cos(2*pi*fm*t);
r=input('Enter the factor by which the sampling frequency has to be increased r: ');
md=interp(m,r);
figure(1);
subplot(3,1,1);
plot(t,m);
grid;
xlabel('t-->');
ylabel('Amplitude-->');
title('Sinusoidal signal before sampling');
subplot(3,1,2);
stem(m);
grid;
xlabel('n-->');
ylabel('Amplitudes of m -->');
title('Sinusoidal signal after sampling before interpolation');
subplot(3,1,3);

stem(md);
grid;
title('Sinusoidal after interpolation');
xlabel('n x r-->');
ylabel('Amplitude of md-->');

OUTPUT:
Let us take a sinusoidal sequence which has to be interpolated:
Enter the signal frequency fm: 2
Enetr the sampling frequnecy fs: 100
Enter the duration of the signal in seconds T: 1
Enter the factor by which the sampling frequency has to be increased r: 2

GRAPHS:

INFERENCE : The only constraint about the program is that the factors of decimation or
interpolation should be an integers. If we want to change the sampling frequency by a factor
which is not an integer it can be done by using the command resample by which we can
change the sampling rate by a factor I / D. For this we have to interpolate by an integer factor
I and then decimate by an integer factor D

RESULT : The Interpolation of given sequences is verified and graphs are plotted.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

t-->

A
m

pl
itu

de
-->

Sinusoidal signal before sampling

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

n-->A
m

pl
itu

de
s

of
 m

 --
> Sinusoidal signal after sampling before interpolation

0 20 40 60 80 100 120 140 160 180 200
-2

0

2
Sinusoidal after interpolation

n x r-->A
m

pl
itu

de
 o

f m
d-

->

Ex No:10(a)

Date:

DSP PROCESSOR IMPLEMENTATION

(Signal conversion)
AIM:

To write a program to convert analog signals into digital signals using
TMS320C50 debugger.
APPARATUS REQUIRED:

1.System with TMS 320C50 debugger software

2.TMS 320C50 Kit.

3.CR0

4.Function Generator.

ALGORITHM:

1. Initialize data pointer with 100H data
2. give the analog signal as input
3. Introduce the time delay as per required.
4. Observe the discrete signal as output
5. Plot the graph.

PROGRAM:

.mmregs

.text
LDP #100H

START:
IN 0,06H
NOP
IN 0,04H RPT
#4FFH
NOP
OUT 0,04H
RPT #4FFH
NOP
B START

MODEL GRAPH:

OUTPUT:

WAVEFORM AMPLITUDE (V) TIME PERIOD (ms)

INPUT

OUTPUT

RESULT:
Thus the given signal was converted using TMS320C50 DSP Processor.

Ex No:10(b)

Date:

FIR BAND PASS FILTER

AIM:

To design a FIR band pass filter in serial mode.

APPARATUS REQUIRED:

1.System with VI debugger software

2.TMS 320C50 Kit.

3.CR0

ALGORITHM:

1. Start the program.
2. Initialize the C table value.
3. Load the auxillary register with 0200H.
4. Modify the auxillary register zero.
5. Block the C table to the program.
6. Set configuration control bit.
7. Load the data pointer with 0AH.
8. Initialize the analog to digital conversion.
9. Load the auxillary register 1 with 0300 content.
10. Load the accumulator in 8000H.
11. AND the accumulator with 0FFFH.
12. Subtract the accumulator content with data 800H.
13. Modify the auxillary register 1.
14. Store the accumulator data in 8000H.
15. Load the auxillary register 1 with content 0333H.
16. Zero the accumulator register.
17. Multiply the accumulator with data.
18. Load the program register, with PM bits to accumulator.
19. Load the auxillary register 1 with content 0300H.
20. Add accumulator content with 800H.
21. Shift the accumulator right 1 bit.
22. Store the accumulator content in 8200 location.
23. Branch the program to step

PROGRAM:
*Approximation type:Window design- Blackmann Window *Filter
type:band Pass Filter
*Filter Order:52
*lower Cutoff frequency in KHZ=3.000000 *upper
Cutoff frequency in KHZ=3.000000

.mmregs

.text
B START

CTABLE:
.word 024AH
.word 010FH
.word 0FH
.word 0FFECH
.word 0C6H
.word 0220H
.word 0312H
.word 02D3H
.word 012FH
.word 0FEBDH
.word 0FC97H
.word 0FBCBH
.word 0FCB0H
.word 0FE9EH
.word 029H
.word 0FFDCH
.word 0FD11H
.word 0F884H
.word 0F436H
.word 0F2A0H
.word 0F58AH
.word 0FD12H
.word 075FH
.word 01135H
.word 01732H
.word 01732H
.word 01135H
.word 075FH
.word 0FD12H
.word 0F58AH
.word 0F2A0H
.word 0F436H
.word 0F884H
.word 0FD11H
.word 0FFDCH
.word 029H
.word 0FE9EH
.word 0FCB0H
.word 0FBCBH
.word 0FC97H
.word 0FEBDH
.word 012FH
.word 02D3H
.word 0312H

 .word 0220H
.word 0C6H
.word 0FFECH

.word 0FH

.word 010FH

.word 024AH

* Move the Filter coefficients
* from program memory to data memory

START:

LAR AR0,#0200H
MAR *,AR0
RPT #33H
BLKP CTABLE,*+
SETC CNF

* Input data and perform convolution
ISR: LDP #0AH

IN 0,06H
IN 0,04H
NOP
NOP
NOP
NOP
LAR AR1,#0300H
LACC 0
AND #0FFFH
SUB #800H
MAR *,AR1
SACL *
LAR AR1,#0333H
ZAP
RPT #33H
MACD 0FF00H,*-
APAC
LAR AR1,#0300H
SACH * ; give as SACH *, 1 in case of overflow
LACC *
ADD #800H
SFR ; remove if output is less amplitude
SACL *
OUT *,4 ;pulse to find sampling frequency
NOP
B ISR
.end

MODEL GRAPH:

TABULATION:

S.No. Frequency(Hz) Vout(v) Vout/Vin Gain in db=
 20log Vout/Vin

RESULT:

Thus the program for designing a FIR band pass filter in serial mode was performed

Ex No:10(c)

Date:

FIR BAND REJECT FILTER

AIM:

To design a FIR band reject filter in serial mode.

APPARATUS REQUIRED:

1.System with VI debugger software

2.TMS 320C50 Kit.

3.CR0

ALGORITHM:

1. Start the program.
2. Initialize the C table value.
3. Load the auxillary register with 0200H.
4. Modify the auxillary register zero.
5. Block the C table to the program.
6. Set configuration control bit.
7. Load the data pointer with 0AH.
8. Initialize the analog to digital conversion.
9. Load the auxillary register 1 with 0300 content.
10. Load the accumulator in 8000H.
11. AND the accumulator with 0FFFH.
12. Subtract the accumulator content with data 800H.
13. Modify the auxillary register 1.
14. Store the accumulator data in 8000H.
15. Load the auxillary register 1 with content 0333H.
16. Zero the accumulator register.
17. Multiply the accumulator with data.
18. Load the program register, with PM bits to accumulator.
19. Load the auxillary register 1 with content 0300H.
20. Add accumulator content with 800H.
21. Shift the accumulator right 1 bit.
22. Store the accumulator content in 8200 location.
23. Branch the program to step 7.

PROGRAM:
*Approximation type:Window design- Blackmann Window *Filter
type:band Pass Filter
*Filter Order:52
*lower Cutoff frequency in KHZ=3.000000 *upper
Cutoff frequency in KHZ=5.000000

.mmregs

.text

B START
CTABLE:

.word 0FEB9H

.word 014EH

.word 0FDA1H

.word 155H

.word 0FE1BH

.word 282H

.word 0FEAFH

.word 2ACH

.word 0FD35H

.word 8DH

.word 0F9D9H

.word 0FE07H

.word 0F7CCH

.word 0FEE2H

.word 0FA2FH

.word 4BAH

.word 1AH

.word 25CH

.word 420H

.word 1008H

.word 89H

.word 0D61H

.word 0F3F2H

.word 0AF9H

.word 0DB7EH

.word 045DFH

.word 0DB7EH

.word 0AF9H

.word 0F3F2H

.word 0D61H

.word 81H

.word 89H

.word 1008H

.word 420H

.word 25CH

.word 1AH

.word 4BAH

.word 0FA2FH

.word 0FEE2H

.word 0F7CCH

.word 0FE07H

.word 0F9D9H

.word 8DH

.word 0FD35H

.word 2ACH

.word 0FEAFH

.word 282H

.word 0FE1BH

.word 155H

.word 0FDA1H

.word 14EH

.word 0FEB9H

* Move the Filter coefficients
* from program memory to data memory

START:

LAR AR0,#0200H
MAR *,AR0
RPT #33H
BLKP CTABLE,*+
SETC CNF

* Input data and perform convolution
ISR: LDP #0AH

IN 0,06H
IN 0,04H
NOP
NOP
NOP
NOP
LAR AR1,#0300H
LACC 0
AND #0FFFH
SUB #800H
MAR *,AR1
SACL *
LAR AR1,#0333H
ZAP
RPT #33H
MACD 0FF00H,*-
APAC
LAR AR1,#0300H
SACH * ; give as SACH *, 1 in case of overflow
LACC *
ADD #800H
SFR ; remove if output is less amplitude
SACL *
OUT *,4 ;pulse to find sampling frequency
NOP
B ISR

.end

MODEL GRAPH:

TABULATION:

S.No. Frequency(Hz) Vout(v) Vout/Vin Gain in db=
 20log Vout/Vin

RESULT:

Thus the program for designing a FIR band reject filter in serial mode was performed using
TMS320C50 debugger

