Department of Electronics and Communication Engineering

Sub Code/Name: BEC5L1- DIGITAL SIGNAL PROCESSING
LABORATORY

Name e e e e
Reg No D e e e e
Branch L e e e e

Y ear & SBMEBS Ol & oottt e e e

LIST OF EXPERIMENTS

SI No Experiments Page No
1 Waveform generation
2 Sampling and its effect on aliasing
3 Linear and circular convolution
4 DFT computation
5 Fast Fourier transforms
6 FIR Filters Implementation
7 IIR Filters Implementation
8 Quantisation Noise.
9 Multirate Signal Processing
10 DSP processor implementation

INDEX

Expt.

Expt.

Name of the Experiment

Marks

Staff SIGN

Ex No:1(a)
Date:

WAVEFORM GENERATION
CONTINUOUS TIME SIGNAL

Aim
To Generate a continuous sinusoidal time signals Using MATLAB.

Requirements

Matlab 2007 SOFTWARE

Procedure

1. OPEN MATLAB

2.File—> New —* Script.

a. Type the program in untitled window

3. File—> Save — type filename.m in matlab workspace path
4. Debug — Run. Wave will displayed at Figure dialog box.

Theory

Common Periodic Waveforms

The toolbox provides functions for generating widely used periodic waveforms:sawtooth
generates a sawtooth wave with peaks at 1 and a period of 2n. An optional width parameter
specifies a fractional multiple of 2x at which the signal's maximum occurs. square generates a
square wave with a period of 2r. An optional parameter specifies duty cycle, the percent of
the period for which the signal is positive.

Common Aperiodic Waveforms

The toolbox also provides functions for generating several widely used aperiodic waveforms:
gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified time, center
frequency, and fractional bandwidth. Optional parameters return in-phase and Quadrature
pulses, the RF signal envelope, and the cutoff time for the trailing pulse envelope. chirp
generates a linear, log, or quadratic swept-frequency cosine signal. An optional parameter
specifies alternative sweep methods. An optional parameter phi allows initial phase to be
specified in degrees.

Program %
% Assuming The Sampling frequency is 5 Mhz

clc;

clear all;

t = 0:0.0005:1;
a=10

f=13;

xa = a*sin(2*pi*f*t);
subplot(2,1,1)
plot(t,xa);grid
xlabel('Time, msec');

ylabel('Amplitude’);

title('Continuous-time signal x_{a}(t)");

axis([0 1 -10.2 10.2])

clear all;

Finput = 1000;

Fsampling = 5000000;

Tsampling = 1/ Fsampling;

Nsample = Fsampling/ Finput;

N = 0:5*Nsample-1;

x=sin(2 * pi * Finput * Tsampling * N);
plot(x); title('Sine Wave Generation’);

xlabel('Time -- >);
ylabelCAmplitude-- >");

grid on;

EXPECTED GRAPH:

Continuous-time signal x_(t)

10 igas Rl el S AL Sl i 1
5 | .
4
=
i l:l_ ..
<
Al b aV M A MV Y N VN Y
0 01 02 03 04 05 06 07 08 09

Time, msec

Result:

Thus the Continuous Time Signal was generated using MATLAB.

Ex No:1(b)
Date:

DISCRETE TIME SIGNAL

Aim
To Generate a Discrete time Exponential signals Using MATLAB.

Requirements

Matlab 2007

Personal computer

Procedure

1. OPEN MATLAB

2. File——— New— Script.

a. Type the program in untitled window

3. File— Save—— type filename.m in matlab workspace path
4. Debug—Run. Wave will displayed at Figure dialog box.

Theory:

Program

clear all;

a=
10;
f=
13;
T=
0.01;
n=
0:T:1;

XS =

a*sin(2*pi*f*n); k

= 0:length(n)-1;

stem(k,xs);

grid

xlabel("Time index n’);
ylabel('Amplitude’);
title('Discrete-time signal
x[n]"); axis([0 (length(n)-1) -
10.2 10.2])

Expected Graph:

Discrete-time signal x[n]
T

10

[y}

o
=

Amplitude
&
T

i L e

&0 B0 0 80 a0 100
Time index n

-
o

Result

Thus the Discrete Time Signal was generated using MATLAB.

Ex No:2
Date:

SAMPLING AND EFFECT OF ALIASING

Aim

To perform a Sampling and effect of aliasing Using MATLAB.
Requirements

Matlab 2007 later

Procedure
1. OPEN MATLAB

2. File ———»New— Script.
a. Type the program in untitled window
3. File—» Save —»type filename.m in matlab workspace path

4. DebugRun. Wave will displayed at Figure dialog box.

Program

cle;

close

all;

clear

all;
t1=0:.0005:.5115;
Hz 1=(2000/2)*(0: 1024/2) / (1024/2);
xl=sin(2*pi*550*tl);
Xl=abs(fft(xI)):
XI1(514:1024)=[];
subplot(211) ;

plot(tI(1:64),xI(1 :64));

subplot(212);

plot(Hz 1 ,XI);

(Fig. 2 shows MATLAB plots for xI and XI)

t2=0:.001:1.023;

Hz2=(1000/2)*(0: 1024/2) / (1024/2);
x2=sin(2*pi * 550*t2);

X2=abs(fft(x2));

X2(514:1024)=[];

subplot(21l);

plot(t2(1 :256),x2(1:256));

subplot(212);

plot(Hz2,X2);

(Fig . 3 shows MATLAB plots for x2 and X2)

-0.5
o 0008 oo T ools 0.02 oars | ooa 0.0xs
LM a)
s . . -
&0 |- 1
% 200 1
i‘ apa |
100}]
% ioo 200 300 400 s00 80O 700 200 SO0 1000
S ey HIE)

Fig.2 550H > sine wave sampled at f, = 2Z,000H =

and its FFT.

o oot o0z

-b:[!ﬂir-}rh
838288

o &0 100 150 200 280 a00 60 400 250 500
frequency(Hz)

Fig.3 5H50H =z sine wave sampled at f, = 1,000H =
and 1ts FFT.

The Fourier expansion contains only odd harmonics, the amplitude of which drop as I/n
(where n=harmonic #) and is infinite. This means that inherently any representation of a
square wave by a discrete sequence will result in aliasing. To illustrate this using MATLAB,
we synthesize a square wave, compute and plot the magnitude of its FFT and compare the
results to the predicted aliased components. We will synthesize a 30Hz square wave with
50% duty cycle, consisting of 1024 points, sampled at a frequency of 1000Hz. The following
are the commands in MATLAB needed to synthesize a square wave, compute its FFT and
plot the results:

x=square(2*pi*30*t2,50);

X=abs(fft(x));

X(514:1024)=[];

plot(Hz2,X);

where t2 and Hz2 are those generated in the previous example and "square” is a
command from the Signal Processing Toolbox .

F1g 4 ShOoWS Lhe grapns generaiea oy MA L LAD.

- v A ———y————— -~ — .

0 50 100 150 zwﬂ 250 300 350 400 450 500
1

Fig. 4 FFT of a 30H z square wave.

The first harmonic of the square wave is 30H z, the
2nd is 90H z, the 3rd 150H z, etc. Since the sampling
rate is f; = 1000H z, we should expect that all the har-
monics above f;/2 = 500H:z will be aliased into the
range DC to 500H =.

Result:

Thus the Sampling was performed and studied the aliasing effect using MATLAB.

Ex No:3(a)
Date:
LINEAR AND CIRCULAR CONVOLUTION
(LINEAR CONVOLUTION)
Aim

To perform a Linear Convolution Using MATLAB.

Requirements
Matlab 2007 later

Procedure

1. OPEN MATLAB
2. File—>» New —— Script.

a. Type the program in untitled window
3. File———— Save —type filename.m in matlab workspace path

4. DebugRun. Wave will displayed at Figure dialog box.

Program

% Program for linear convolution of the sequence x5[1, 2] and h5[1, 2, 4]

clc;

clear

all;

close

all;

x=input('enter the 1* sequence’);
h=input(‘enter the 2" sequence’);
y=conv(x,h);

figure;

subplot(3,1,1);

stem(x);

ylabel('Amplitude --.");
xlabel('(a) n --.");

title('first sequence’);
subplot(3,1,2);

stem(h);

ylabel('Amplitude --.");
xlabel('(b) n --.");
title('Second sequence’);
subplot(3,1,3);

stem(y);

ylabel('Amplitude --.");
xlabel('(c) n --.");
title('Convoluted sequence’);
disp('The resultant signal is');

Output:

enter the 1st sequence [1 2]
enter the 2nd sequence [1 2 4]
The resultant signal is
Y=1488

EXPECTED GRAPHS:

Amplitude —-

Result
Thus the Linear convolution was performed using MATLAB.

Ex No:3(b)
Date:
CIRCULAR CONVOLUTION

Aim
To perform a Circular Convolution Using MATLAB.

Requirements

Matlab 2007 later
Procedure

1. OPEN MATLAB

2. File———» New —Script.
a. Type the program in untitled window

3. File— Save —»type filename.m in matlab workspace path

4. Debug— Run. Wave will displayed at Figure dialog box.

Program

clc; clear all;

a = input(enter the sequence x(n) =);
b = input(,,enter the sequence h(n) = *);
nl=length(a);

n2=length(b);

N=max(n1,n2);

x = [a zeros(1,(N-n1))];
fori=1:N

k=1i;

for j = 1:n2 H(i,j)=x(K)* b(j);
k = k-1;

if (k==0)k=N;

end

end

end

y=zeros(1,N);

M=H*;for j= 1:N for i = 1:n2
y()=M(i.))+y();

end

end

disp(,, The output sequence is y(n)=,,);
disp(y);

stem(y);

title(,,Circular Convolution®);
xlabel(,,n");

ylabel(,y(n)..);

OUTPUT:

enter the sequence x(n) = [1 2 4]
enter the sequence h(n) = [1 2]
The output sequence is y(n)=94 8

% Program for Computing Circular Convolution with zero padding

clc;
close all;

clear all;
x=input(‘enter the first sequence’);
h=input(‘enter the 2nd sequence');
y=x"*h;,
nl=length(x);
n2=length(h);
figure subplot(3,1,1) stem(x);
title('Input sequence’);
xlabel('nl’);
ylabel("x(n1)");
subplot(3,1,2) stem(h);
title('Impulse sequence’);
xlabel('n2");
ylabel('h(n2)");
n=nl+n2-1;
c=zeros(n);
fori=1:nl
for j=1:n2 c(i+j-1)=c(i+j-1)+y(i,j);
end
end
for i=1:n d(i)=c(i,1);
end
disp(‘convoluted sequence’);
disp(d);
n3=1:n;
subplot(3,1,3) stem(n3-1,c);
title('Convoluted sequence');
xlabel('time’);
ylabel('Amplitude’);

OUTPUT:

enter the first sequence [1 2 4]
enter the 2nd sequence [1 2]
The resultant signal is y=14 8 8

Result
Thus the Circular convolution was performed using MATLAB.

Ex No:4
Date:
DISCRETE FOURIER TRANSFORM (DFT) COMPUTATIONS

AIM : To find the Discrete Fourier Transform of a sequence.

SOFTWARE REQUIRED : MAT LAB 7.0

PROGRAM DESCRIPTION : In this program the Discrete Fourier Transform
(DFT) of a sequence x[n] is generated by using the formula,
N-1

X(K) = 2 x(n) g2k /N Where, X(k) = DFT of sequence x[n]

n=0
N represents the sequence length and it is calculated by using the command ‘length’. The
DFT of any sequence is the powerful computational tool for performing frequency analysis of
discrete-time signals.

MATLAB CODE :
clc;
clear all;
close all;
a=input('Enter the sequence :');
N=length(a);
disp('The length of the sequence is:");N
for k=1:N
y(K)=0;
for i=1:N
y(K)=y(k)+a(i)*exp((-2*pi*j/N)*((i-1)*(k-1)));
end;
end;
k=1:N
disp('The result is:");y
figure(1);
subplot(211);
stem(k,abs(y(k)));
grid;
xlabel('sample values n-->');
ylabel('Amplitudes-->');
title('Mangnitude response of the DFT of given sequence’);
subplot(212);
stem(angle(y(k))*180/pi);
grid;
xlabel('sample values n-->');
ylabel('phase-->");
title('Phase response of the DFT of given sequence’);

OUTPUTS:

Enter the sequence : [1 2 3 4]

The length of the sequence is: N = 4

k=1 2 3 4

The result is: y= 10.0000 -2.0000 +2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i

GRAPHS :

Amplitudes-->

phase-->

-100

-200

INFERENCE : To perform the frequency analysis on a discrete-time signal x[n] can be

100

Mangnitude response of the DFT of given sequence

200

15 2 25 3 35
sample values n-->
Phase response of the DFT of given sequence

100

generated from a continuous signal x(t). Here in the program y(k) refers to the DFT of the
sequence a. The DFT consists of two parts. The magnitude and phase angle of x(k) are
calculated by using abs and angle commands and plotted using stem command.

RESULT : The Discrete Fourier Transform (DFT) of a sequence is obtained and response is

plotted.

Ex No:
Date:

5

15 2 25 3 35
sample values n-->

FINDING THE FFT OF DIFFERENT SIGNALS

AIM : To find the FFT of different signals like impulse, step, ramp and exponential.

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: In this program using the command FFT for impulse, step,
ramp and exponential sequences the FFT is generated. In the process of finding the FFT the
length of the FFT is taken as N. The FFT consists of two parts: MAGNITUDE PLOT and
PHASE PLOT. The magnitude plot is the absolute value of magnitude versus the samples
and the phase plot is the phase angle versus the samples.

MATLAB CODE:

% FFT of the impulse sequence : magnitude and phase response
clc;
clear all;
close all;
%impulse sequence
t=-2:1:2;
y=[zeros(1,2) 1 zeros(1,2)];
subplot (3,1,1);
stem(t,y);
grid;
input(’y=");
disp(y);
title ("Impulse Response’);
xlabel (‘time -->);
ylabel ('--> Amplitude’);
XN=y;,
N=input(‘enter the length of the FFT sequence: *);
xk=fft(xn,N);
magxk=abs(xKk);
angxk=angle(xKk);
k=0:N-1;
subplot(3,1,2);
stem(k,magxk);
grid;
xlabel('k’);
ylabel([x(k)[);
subplot(3,1,3);
stem(k,angxk);
disp(xk);
grid;
xlabel('k’);
ylabel('arg(x(k))");

OUTPUTS:

y=0 0 1 0 O

enter the length of the FFT sequence: 10

1.0000 0.3090 - 0.9511i -0.8090-0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i
1.0000 0.3090 - 0.9511i -0.8090-0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i

GRAPHS:
Impulse Response
[} 1
E
g os
¢
hoob)
2 -1.5 1 0.5 o 0.5 1 1.5 2
time -->
1)
g os
X
o
o 1 2 3 4 5 6 7 8 9
k
5
X o
o
8
5
o 1 2 3 4 5 6 7 8 9
k
% FFT of the step sequence : magnitude and phase response
clc;
clear all;
close all;

%Step Sequence

s=input (‘enter the length of step sequence’);
t=-s:1:s;

y=[zeros(1,s) ones(1,1) ones(1,s)];
subplot(3,1,1);

stem(t,y);

grid

input(’y=");

disp(y);

title ("Step Sequence’);

xlabel (‘time -->);

ylabel ('--> Amplitude’);

XN=y;,

N=input(‘enter the length of the FFT sequence: *);
xk=fft(xn,N);

magxk=abs(xKk);

angxk=angle(xKk);

k=0:N-1;

subplot(3,1,2);
stem(k,magxk);

grid

xlabel('k’);

ylabel(|x(k)[);

subplot(3,1,3);

stem(k,angxk);

disp(xk);

grid

xlabel('k’);

ylabel(‘arg(x(K))");
OUTPUTS:

enter the length of step sequence: 5
y=0 0 0 0 0 1 1 1 1 1 1

enter the length of the FFT sequence: 10

5.0000 -1.0000+3.0777i 0O -1.0000 + 0.7265i 0 -1.0000
-1.0000 - 0.7265i 0 -1.0000 - 3.0777i
GRAPHS:
Step Sequence
g 1
2
g 05
<
Yoo
-5 4 3 -2 1 0 1 2 4
time -->
56
)
x
0
0 1 2 3 4 5 8
k
5
5
x 0¢
2
©
-5
0 1 2 3 4 5 8
k

% FFT of the Ramp sequence: magnitude and phase response

clc;

clear all;

close all;
%Ramp Sequence
s=input (‘enter the length of Ramp sequence: ');
t=0:s;
y=t
subplot(3,1,1);
stem(t,y);
grid
input(’y=");
disp(y);
title ('ramp Sequence’);
xlabel (‘time -->);
ylabel ('--> Amplitude’);
XN=y;,
N=input(‘enter the legth of the FFT sequence: ');
xk=fft(xn,N);
magxk=abs(xKk);
angxk=angle(xKk);
k=0:N-1;
subplot(3,1,2);
stem(k,magxk);
grid
xlabel('k);
ylabel([x(k)[);
subplot(3,1,3);
stem(k,angxk);
disp(xk);
grid
xlabel('k’);
ylabel('arg(x(k))");

OUTPUTS:
enter the length of Ramp sequence: 5
y= 0 1 2 3 4 5

enter the length of the FFT sequence: 10
15.0000 -7.7361-7.6942i 2.5000 + 3.4410i -3.2639 - 1.8164i 2.5000 + 0.8123i
-3.0000 2.5000 - 0.8123i -3.2639 + 1.8164i 2.5000 - 3.4410i -7.7361 + 7.6942i

GRAPHS:

ramp Sequence

o 5 D
©
=
=
IS
<
Yoo
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time -->
20
2 10
x
0
0 1 2 3 4 5 6 7 8 9
k
5
)
x O
(@]
@
-5
0 1 2 3 4 5 6 7 8 9
k

% FFT of the Exponential Sequence : magnitude and phase response

clc;
clear all;
close all;
%exponential sequence
n=input(‘enter the length of exponential sequence: ');
t=0:1:n;
a=input('enter "a" value: ");
y=exp(a*t);
input('y=")
disp(y);
subplot(3,1,1);
stem(t,y);
grid;
title('exponential response’);
xlabel(‘time");
ylabel(‘amplitude’);
disp(y);
XN=y;,
N=input(‘enter the length of the FFT sequence: *);

xk=fft(xn,N);
magxk=abs(xKk);
angxk=angle(xKk);
k=0:N-1;
subplot(3,1,2);
stem(k,magxk);
grid;
xlabel('k);
ylabel('|x(k)[);
subplot(3,1,3);
stem(k,angxk);
grid;
disp(xk);
xlabel('k’);
ylabel(‘arg(x(k)));

OUTPUTS:
enter the length of exponential sequence: 5

enter "a" value: 0.8
y= 1.0000 2.2255 4.9530 11.0232 24.5325 54.5982

enter the length of the FFT sequence: 10

98.3324 -73.5207 -30.9223i 50.9418 +24.7831i -41.7941 -16.0579i
38.8873 +7.3387i -37.3613 38.8873 - 7.3387i -41.7941 +16.0579i
-24.7831i -73.5207 +30.9223i

GRAPHS :

50.9418

exponential response

100
(0]
©
=]
= 50
Q.
€
®©
0ob
0 0.5 1 1.5 2 25 3 35 4 4.5 5
time
100p
2 s0
x
0
0 1 2 3 4 5 6 7 8 9
k
5
)
x O
(@]
@
-5
0 1 2 3 4 5 6 7 8 9
k

INFERENCE : The FFT for impulse, step, ramp and exponential sequences is generated
using the FFT command. The magnitude plot is the absolute value of magnitude versus the
samples and the phase plot is the phase angle versus the samples is plotted for different
signals for different values. This program is very simple and requires defining the signal and
finding FFT and plotting.

RESULT : The FFT of different signals like impulse, step, ramp and exponential is found
and the magnitude and phase plots of the same is plotted.

Ex No:6
Date:

IMPLEMENTATIONOF LP & HP FIR FILTER FOR A GIVEN SEQUENCE
(USING WINDOWING TECHNIQUES)

AIM: To implement the FIR filter for a given sequence by using windowing techniques.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: A Finite Impulse Response (FIR) filter is a discrete linear
time-invariant system whose output is based on the weighted summation of a finite number of
past inputs.

An FIR transversal filter structure can be obtained directly from the equation for discrete-
time convolution.

N-1
y [n] =2 X(K) h(n-K) 0< n< N-1

k=0

In this equation, x(k) and y(n) represent the input to and output from the filter at time n. h(n-
K) is the transversal filter coefficients at time n. These coefficients are generated by using
FDS (Filter Design Software or Digital filter design package).

FIR — filter is a finite impulse response filter. Order of the filter should be specified.

Infinite response is truncated to get finite impulse response. Placing a window of finite length
does this. Types of windows available are Rectangular, Barlett, Hamming, Hanning,
Blackmann window etc. This FIR filter is an all zero filter.

MATLAB CODE:

clc;

clear all;

close all;

rp=input(‘enter passband ripple’);
rs=input(‘'enter the stopband ripple’);
fp=input(‘enter passband freq’);
fs=input(‘enter stopband freq’);
f=input('enter sampling freq *);
wp=2*fp/f;

ws=2*fs/f;
num=-20*log10(sqrt(rp*rs))-13;
dem=14.6*(fs-fp)/f;
n=ceil(num/dem);

nl=n+1;

if(rem(n,2)~=0)

nl=n;

n=n-1;

end

c=input(‘enter your choice of window function 1. rectangular 2. triangular 3.kaiser: \n ');
if(c==1)

y=rectwin(nl);

disp('Rectangular window filter response’);
end

if (c==2)

y=triang(nl);

disp(‘Triangular window filter response’);
end

if(c==3)

y=kaiser(nl);

disp('kaiser window filter response’);
end

%LPF

b=firl(n,wp,y);

[h,0]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,1,1);plot(o/pi,m);
title('LPF");

ylabel('Gain in dB-->");

xlabel('(a) Normalized frequency-->');

%HPF

b=firl(n,wp,high',y);
[h,0]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,1,2);plot(o/pi,m);
title("HPF');

ylabel('Gain in dB-->");

xlabel('(b) Normalized frequency-->");

USING RECTANGULAR WINDOW

OUTPUT:

enter passband ripple0.02

enter the stopband ripple0.01

enter passband freq1000

enter stopband freq1500

enter sampling freq 10000

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:
1

Rectangular window filter response

GRAPH:
LPF

50 T T T T T
n
& 0
©
£
S s0f
O]

-100 [| | [[| [[|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(a) Normalized frequency-->
HPF

20 T T T T T
A 0
2
£ 20
£
& 40

_60 [| | [[| [[|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Normalized frequency-->

OUTPUT:

enter passband ripple0.02

enter the stopband ripple0.01

enter passband freq1000
enter stopband freq1500
enter sampling freq 10000
enter your choice of window function 1. rectangular 2. triangular 3.kaiser:

USING TRIANGULAR WINDOW

2
Triangular window filter response
GRAPH:
LPF
O T T T T T

A

& -20 -

©

£

S 40

O

-60 L | | L L | I I |
0 01 02 03 04 05 06 07 08 09
(a) Normalized frequency-->
HPF
O T T T T T

N

P10+

m

©

£

.% 20-

O

_30 [| | [[| [[|
0 010 02 03 04 05 06 07 08 09

OUTPUT:

(b) Normalized frequency-->

USING KAISER WINDOW

enter passband ripple0.02

enter the stopband ripple0.01

enter passband freq1000

enter stopband freq1500

enter sampling freq 10000

enter your choice of window function 1. rectangular 2. triangular 3.kaiser:
3

kaiser window filter response

GRAPH:
LPF
50 T T T T T
A\
o 0 7
©
£
S 50 -
V)
-100 L | | L L | I I |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(a) Normalized frequency-->
HPF
20 T T T T T
A O
g
£ 20
£
3 -40
_60 [1 1 [[1 [[1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Normalized frequency-->

INFERENCE: This program requires certain specifications about the pass band and stop
band ripple & frequencies and the sampling frequency. Here we have used a function called
“firl” in order to design a Nth order Low pass and a High pass filter. This function returns the
filter coefficients in length N+1 vector b. The cutoff frequency “wp’ must be between 0 <
wp < 1.0, with 1.0 corresponding to half the sampling rate.

Based up on the choice of available windowing functions, the filter response is generated.

RESULT: The LP and HP FIR Filter response for the given sequence is generated based
upon the choice of the windowing function and the filter characteristics are plotted.

Ex No:7(A)
Date:
IMPLEMENTATION OF IIR LP FILTER FOR A GIVEN SEQUENCE

AIM: To design and implement IIR (LPF) filters for a given sequence.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: The IIR filter can realize both the poles and zeroes of a
system because it has a rational transfer function, described by polynomials in z in both the
numerator and the denominator:

M

H(z) = X b, z*
k=0
M

Yaz“
k=0

The difference equation for such a system is described by the following:

Y(n):kg bk x(n-K) + 2 ax y(n-k)

k=1

M and N are order of the two polynomials by and ax are the filter coefficients. These filter
coefficients are generated using FDS (Filter Design software or Digital Filter design
package).

IIR filters can be expanded as infinite impulse response filters. In designing IIR filters, cutoff
frequencies of the filters should be mentioned. The order of the filter can be estimated using
butter worth polynomial. That’s why the filters are named as butter worth filters. Filter
coefficients can be found and the response can be plotted.

MATLAB CODE:

clc;

clear all;

close all;

disp(‘enter the IR filter design specifications');
rp=input(‘enter the passhand ripple’);
rs=input(‘'enter the stopband ripple’);
wp=input(‘'enter the passhand freq’);
ws=input(‘enter the stopband freq’);
fs=input(‘enter the sampling freq’);
wl=2*wp/fs;

w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s");
disp('Frequency response of IR LPF is:");
[b,a]=butter(n,wn,'low",'s");

w=0:.01:pi;

[h,om]=fregs(b,a,w);
m=20*log10(abs(h));

an=angle(h);

figure,subplot(2,1,1);

plot(om/pi,m);

title('magnitude response of IIR LP filter is:");
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->");

subplot(2,1,2);

plot(om/pi,an);

title('phase response of 1IR LP filter is:');
xlabel('(b) Normalized freg. -->');
ylabel('Phase in radians-->');
OUTPUT:

enter the IIR filter design specifications
enter the passhband ripple0.15

enter the stopband ripple60

enter the passhand freq1500

enter the stopband freq3000

enter the sampling freq7000

Frequency response of IR LPF is:
GRAPHS:

magnitude response of IR LP filter is:
100 T T T T T T T

-100

Gain in dB-->

-200

[[|

[[|
0 01 02 03 04 05 06 07 08 09 1

-300 | | |

(@) Normalized freq. -->
phase response of lIR LP filter is:

4 \ \

Phase in radians-->
o

T

[

T

[

T

[

0 01 02 03

0.4

(b) Normalized freq. -->

0.5

|
0.6

0.7

0.8

0.9 1

INFERENCE: This program requires certain specifications about the pass band and stop
band ripple & frequencies and the sampling frequency. Here we have used a function called
‘[n,wn]=buttord(w1,w2,rp,rs,'s")’ in order to find the lowest order N of digital butterworth
filter that loses no more than “rp’ db in the pass band and has at least ‘rs’ db of attenuation
in the stop band . wl and w2 are the pass band and stop band edge frequencies, normalized

from 0 to 1.

The function ‘butter’ designs a Nth order low pass digital butterworth filter and returns the
filter coefficients in length N+1 vectors B(numerator) and A (denominator).

RESULT: The LP IIR Filter response for the given sequence is generated and the filter
characteristics are plotted.

Ex No:7(B)
Date:
IMPLEMENTATION OF IIR HP FILTER FOR A GIVEN SEQUENCE

AIM: To design and implement IR (HPF) filters for a given sequence.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION: The IIR filter can realize both the poles and zeroes of a
system because it has a rational transfer function, described by polynomials in z in both the
numerator and the denominator:

M

H(z) = X b, z*
k=0
M

Yaz“
k=0

The difference equation for such a system is described by the following:

Y(n)=2 b x(n-k) + 2. ac y(n-Kk)

k=0 k=1

M and N are order of the two polynomials by and ax are the filter coefficients. These filter
coefficients are generated using FDS (Filter Design software or Digital Filter design
package).

IIR filters can be expanded as infinite impulse response filters. In designing IIR filters, cutoff
frequencies of the filters should be mentioned. The order of the filter can be estimated using
butter worth polynomial. That’s why the filters are named as butter worth filters. Filter
coefficients can be found and the response can be plotted.

MATLAB CODE:

clc;

clear all;

close all;

disp(‘enter the IR filter design specifications');
rp=input(‘enter the passhand ripple’);
rs=input(‘'enter the stopband ripple’);
wp=input(‘enter the passhand freq’);
ws=input(‘enter the stopband freq’);
fs=input(‘enter the sampling freq’);
wl=2*wpl/fs;

w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s");
disp('Frequency response of IR HPF is:");
[b,a]=butter(n,wn,'high','s");

w=0:.01:pi;

[h,om]=fregs(b,a,w);
m=20*log10(abs(h));

an=angle(h);

figure,subplot(2,1,1);

plot(om/pi,m);

title('magnitude response of IR HP filter is:');
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->");

subplot(2,1,2);

plot(om/pi,an);

title('phase response of IR HP filter is:");
xlabel('(b) Normalized freq. -->');
ylabel('Phase in radians-->');

OUTPUT:

enter the IIR filter design specifications
enter the passband ripple0.15

enter the stopband ripple60

enter the passhand freq1500

enter the stopband freq3000

enter the sampling freq7000

Frequency response of IR HPF is:

GRAPHS:

200

Gain in dB-->

magnitude response of IIR HP filter is:

T

T

T

-200
-400
_600 [| | [[| [[|
0 01 02 03 04 05 06 07 08 09
(@) Normalized freq. -->
phase response of IIR HP filter is:
4 T T T T T T T
\
0w 2
c
8
o
S0
=
[¢b)
8 -2
=
[a
_4 [| | [[| [[|
0 01 02 03 04 05 06 07 08 09

(b) Normalized freq. -->

INFERENCE: This program requires certain specifications about the pass band and stop

band ripple & frequencies and the sampling frequency. Here we have used a function called
‘[n,wn]=buttord(w1,w2,rp,rs,'s")’ in order to find the lowest order N of digital butterworth
filter that loses no more than ‘rp’ db in the pass band and has at least ‘rs’ db of attenuation
in the stop band . wl and w2 are the pass band and stop band edge frequencies, normalized
from O to 1.

The function “butter’ designs a Nth order high pass digital butterworth filter and returns the

filter coefficients in length N+1 vectors B (numerator) and A (denominator).

RESULT: The HP IIR Filter response for the given sequence is generated and the filter
characteristics are plotted.

Ex No:8(a)
Date:

QUANTIZATION OF NOISE

(Quantization of Gaussian Noise Signal)

AIM: To compute Quantization of Gaussian Noise Signal for a given signal.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION:
t=0:0.1:4*pi;
FfprintF(CExp\t\tTh\t\tMean\t\tVar\n");
for n=4:4:16,

x=randn(l, length(t));
xd=round(x*2”~(n-1))/2~(n-1);
error=xd-x;
error_mean=mean(abs(error));
error_variance=var(error);
figure; plot(t,x,t,xd,t,error)
legend("x","xd","error™)
SQNR=10*10g10(sum(x.”2)/sum(error.”2));
SQNR_eqgn=1.76+6.02*n;
title(strcat(num2str(n),” bits. SQNR=",num2str(SQNR), "
dB. ")) FfprintF("%0.4F\t%0.4F\t%0.3e\t%0.3e\n",SONR,SQNR_eqn,error_mean,erro
r_variance);
end

Exoerimental Mean Variance in
Bits SQpNR (dB) Quantization | Quantization
Noise Noise
4 29.1933 3.22E-02 1.34E-03
8 52.0926 1.86E-03 4.82E-06
12 77.1105 1.23E-04 1.99E-08
16 101.1026 7.33E-06 7.52E-11
4 hits. 0N 1933 dB.
2 T T T T T
w
15- \ xd |7
errar
1- _
05- \ \ M } || U\ H | -
[]] "\.J- -rﬂ.z—‘if\ L1 M4 L] ,_gl.\; 11 ™ -
_“_5 III -
S |
-15- -
2 -
25- -
_3 1 1 1 1 1 1

S A

RESULT:

Thus the Quantization of Gaussian Noise Signal was computed for a given signal.

Ex No:8(b)
Date:
Quantization of Sinusoidal Signal with Gaussian Random Noise

AIM: To compute Quantization of Sinusoidal Signal with Gaussian Random Noise
for a given signal.

SOFTWARE REQUIRED: MATLAB 7.0

PROGRAM DESCRIPTION:

t=0:0.1:4*pi;

FprintfF (" SNR\T\tExp\t\tTh\t\tMean\n");

for n=4:4:16,
x_original=sin(t);
noise=randn(1, length(t))./sqrt(200);
x=x_original+noise;
xd_original=round(x_original*2~(n-1))/2~(n-1);
xd=round(x*2”~(n-1))/2~(n-1);
error_original=xd_original-x_original;
error=xd-x;
error_mean=mean(abs(error));
figure; plot(t,x,t,xd,t,error)
legend("x","xd","error"™)
SNR=10*10g10(sum(x.”2)/ (sum(error .~2)+sum(noise.2)));
SQNR=10*10g10(sum(x.”2)/(sum(error.”2)));

SQNR_eqgn=1.76+6.02*n;
title(strcat(num2str(n),” bits. SNR=",num2str(SNR), "

dB.™)) Fprintf("%0. 4R\ t%0 . 4F\t%0 .4\ t%0.3e\n" ,SNR, SQNR,SQNR_eqn,error_me
an);
end
Bits Experimental | Experimental | Theoretical Qual\r?t(iesgtion
SNR (dB) SQNR (dB) [SONR (dB) Noise
4 19.0702 29.1933 25.84 3.22E-02
8 19.7978 52.0926 49.92 1.86E-03
12 19.646 77.1105 74 1.23E-04
16 19.4478 101.1026 98.08 7.33E-06
4 bits. SHR=19.0702 dB.
1.5 T T T T T
x
xd
error |-
_1_5 1 1 1 1 1
] 4 6 8 10 12 "

i hits. SNR=19.7978 dB.

1.5 T T T T T T
X
xd
1- errar | -
05- -
n : -
b5- \/ -
1- -
_1 _5 | | | | | |
] 2 4 b L] 10 12
12 bits. SMR-19.646 dH.
1.5 T T T T T T
X

16 biis. SNR=19.4478 d.
1.5 T T T T T T

xd
error |-

05-

45-

RESULT:
Thus Quantization of Sinusoidal Signal with Gaussian Random Noise was computed
for a given signal.

ARCHITECTURE OF DSP CHIPS — TMS
320 C5X16X INSTRUCTION

EQUIPMENT REQUIRED: DSP Hardware Kit- DSK C6713
THEORY: The C6713 DSK pin has the following features

1. Code Composer communicates with the DSK through an embedded JTAG emulator with
a USB host interface.

2. The DSK can also be used with an external emulator through the external JTAG connector.
TMS320C6713 DSP Features

B

: Highest-Performance Floating-Point Digital Signal Processor (DSP):
> Eight 32-Bit Instructions/Cycle
32/64-Bit Data Word

300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

3.3-, 4.4-, 5-, 6-Instruction Cycle Times
2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS
Rich Peripheral Set, Optimized for Audio
Highly Optimized C/C++ Compiler
Extended Temperature Devices Available
* Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core
> Eight Independent Functional Units:
Two ALUs (Fixed-Point)
Four ALUs (Floating- and Fixed-Point)
Two Multipliers (Floating- and Fixed-Point)
Load-Store Architecture With 32 32-Bit General-Purpose Registers
Instruction Packing Reduces Code Size
Al Instructions Conditional
Instruction Set Features

Native Instructions for IEEE 754

Single- and Double-Precision

Byte-Addressable (8-, 16-, 32-Bit Data)
8-Bit Overflow Protection
Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization
L1/L2 Memory Architecture
4K-Byte L1P Program Cache (Direct-Mapped)
> 4K-Byte L1D Data Cache (2-Way)
>

256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-
Byte Additional L2 Mapped RAM

8
= | Memory Exp
T McBSPs | : 1T
AIC23 ._EMIF
MUX : =
Codec 11 T T 1. E
SN o] Lt S N
esmax____ L6713 |9 | | & || 5| |2
Do o o w
P ZLLC) MUY = DSP O T # 2
Voltage ; :
Reg : I s
Embedded - -l :
. ' = Peripheral Ex
. | JTAG P P
Bk T — —
i o Ext. NEEER (LD | [DIP]
= B | JTAG ik 0123 0123

TMS320C6713 DSK Overview Block Diagram

Device Configuration

Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot
Endianness: Little Endian, Big Endian
32-Bit External Memory Interface (EMIF)
Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM
> 512M-Byte Total Addressable External Memory Space
Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)
16-Bit Host-Port Interface (HPI)
Two Multichannel Audio Serial Ports (McASPS)

Two Independent Clock Zones Each (1 TX and 1 RX)

> Eight Serial Data Pins Per

Port:
Individually Assignable to any of the Clock Zones

Each Clock Zone Includes:
) Programmable Clock Generator
Programmable Frame Sync Generator

TDM Streams From 2-32 Time Slots

Support for Slot
Size:
8, 12, 16, 20, 24, 28, 32 Bits

Data Formatter for Bit Manipulation
Wide Variety of 12S and Similar Bit Stream Formats
Integrated Digital Audio Interface Transmitter (DIT) Supports:
S/PDIF, IEC60958-1, AES-3, CP-430 Formats
Up to 16 transmit pins
Enhanced Channel Status/User Data
Extensive Error Checking and Recovery
Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces
Two Multichannel Buffered Serial Ports:
Serial-Peripheral-Interface (SPI)

High-Speed TDM Interface

AC97

Two 32-Bit General-Purpose Timers

Dedicated GPIO Module With 16 pins (External Interrupt Capable)

Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module

IEEE-1149.1 (JTAG T) Boundary-Scan-Compatible

Package Options:

> 208-Pin Power PAD™ Plastic (Low-Profile) Quad Flat pack (PYP)

> 272-BGA Packages (GDP and ZDP)
0.13-pum/6-Level Copper Metal Process

> CMOS Technology

3.3-V 1/0s, 1.2 ¥ -V Internal (GDP & PYP)

3.3-V 1/0s, 1.4-V Internal (GDP)(300 MHz only)

Ex No:9(a)
Date:

MULTIRATE SIGNAL PROCESSING
(PROGRAM TO VERIFY DECIMATION)

AIM: To verify Decimation and Interpolation of a given Sequences

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: The sampling rate alteration that is employed to generate a
new sequence with a sampling rate lower than that of a given sequence. Thus, if x[n] is a
sequence with a sampling rate of F+ Hz and it is used to generate another sequence y[n] with

a desired sampling rate of Fr Hz, then the sampling rate alteration ratio is given by FT'/ Fr=
R.

If R < 1, the sampling rate is decreased by a process called decimation and it results in a
sequence with a lower sampling rate.

The decimation can be carried out by using the pre-defined commands decimate.

MATLAB CODE:

% DECIMATION

clc;

clear all;

close all;

disp('Let us take a sinusoidal sequence which has to be decimated: *);
fm=input('Enter the signal frequency fm:");
fs=input('Enetr the sampling frequnecy fs: *);
T=input('Enter the duration of the signal in seconds T:);
dt=1/fs;

t=dt:dt:T

M=length(t);

m=cos(2*pi*fm*t);

r=input('Enter the factor by which the sampling frequency has to be reduced r: *);
md=decimate(m,r);

figure(1);

subplot(3,1,1);

plot(t,m);

grid;

xlabel('t-->");

ylabel('Amplitude-->');

title('Sinusoidal signal before sampling’);

subplot(3,1,2);

stem(m);

grid;

xlabel('n-->");

ylabel('Amplitudes of m -->');

title('Sinusoidal signal after sampling before decimation’);

subplot(3,1,3);

stem(md);

grid;

title('Sinusoidal after decimation’);
xlabel('n/r-->');

ylabel('Amplitude of md-->");

OUTPUT:

Let us take a sinusoidal sequence which has to be decimated:

Enter the signal frequency fm: 2

Enetr the sampling frequnecy fs: 100

Enter the duration of the signal in seconds T: 1

Enter the factor by which the sampling frequency has to be reduced r: 2

GRAPHS:

Sinusoidal signal before sampling

Amplitude-->

0 01 02 03 04 05 06 07 08 09 1
t->

" Sinusoidal signal after sampling before decimation

e 1

= e, i,
[<5]

=)

51

g 0 10 200 30 40 50 60 70 80 9 100
< >

i Sinusoidal after decimation

e i
solllte, | o, o]
2 TR IR

S -1

E 0 5 10 5 20 25 30 3% 40 45 50

n/r-->

INFERENCE : The only constraint about the program is that the factors of decimation or
interpolation should be an integers. If we want to change the sampling frequency by a factor
which is not an integer it can be done by using the command resample by which we can
change the sampling rate by a factor | / D. For this we have to interpolate by an integer factor
I and then decimate by an integer factor D

RESULT : The Decimation of given sequences is verified and graphs are plotted.

Ex No:9(b)
Date:
PROGRAM TO VERIFY INTERPOLATION

AIM: To verify Interpolation of a given Sequence.

SOFTWARE REQUIRED: MAT LAB 7.0

PROGRAM DESCRIPTION: The sampling rate alteration that is employed to generate a
new sequence with a sampling rate higher than that of a given sequence. Thus, if x[n] is a
sequence with a sampling rate of F+ Hz and it is used to generate another sequence y[n] with

a desired sampling rate of F+ Hz, then the sampling rate alteration ratio is given by FT'/ Fr=
R.

If R > 1, the process is called interpolation and results in a sequence with a higher sampling
rate.

The interpolation can be carried out by using the pre-defined command interp respectively.

MATLAB CODE:

%INTERPOLATION

clc;

clear all;

close all;

disp('Let us take a sinusoidal sequence which has to be interpolated: *);
fm=input('Enter the signal frequency fm:");

fs=input('Enetr the sampling frequnecy fs: *);
T=input('Enter the duration of the signal in seconds T:);
dt=1/fs;

t=dt:dt:T

M=length(t);

m=cos(2*pi*fm*t);

r=input('Enter the factor by which the sampling frequency has to be increased r: *);
md=interp(m,r);

figure(1);

subplot(3,1,1);

plot(t,m);

grid;

xlabel('t-->");

ylabel('Amplitude-->');

title('Sinusoidal signal before sampling’);

subplot(3,1,2);

stem(m);

grid;

xlabel('n-->");

ylabel('Amplitudes of m -->');

title('Sinusoidal signal after sampling before interpolation’);
subplot(3,1,3);

stem(md);

grid;

title('Sinusoidal after interpolation’);
xlabel('n x r-->";

ylabel('Amplitude of md-->");

OUTPUT:

Let us take a sinusoidal sequence which has to be interpolated:

Enter the signal frequency fm: 2

Enetr the sampling frequnecy fs: 100

Enter the duration of the signal in seconds T: 1

Enter the factor by which the sampling frequency has to be increased r: 2

GRAPHS:

Sinusoidal signal before sampling

Amplitude-->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t->

h Sinusoidal signal after sampling before interpolation
e 1
©
I il e Wi
=
51
g 0 10 20 30 40 50 60 70 80 90 100
<
n-->
7\ Sinusoidal after interpolation
©
IS
©
D
©
= i ;
S 2 i i |
E 0 20 40 60 80 100 120 140 160 180 200

nxr->

INFERENCE : The only constraint about the program is that the factors of decimation or
interpolation should be an integers. If we want to change the sampling frequency by a factor
which is not an integer it can be done by using the command resample by which we can
change the sampling rate by a factor | / D. For this we have to interpolate by an integer factor
I and then decimate by an integer factor D

RESULT : The Interpolation of given sequences is verified and graphs are plotted.

Ex No:10(a)
Date:

DSP PROCESSOR IMPLEMENTATION

(Signal conversion)

AlIM:

To write a program to convert analog signals into digital signals using
TMS320C50 debugger.
APPARATUS REQUIRED:

1.System with TMS 320C50 debugger software
2.TMS 320C50 Kit.
3.CRO

4.Function Generator.

ALGORITHM:

Initialize data pointer with 100H data
give the analog signal as input
Introduce the time delay as per required.
Observe the discrete signal as output
Plot the graph.

AR A

PROGRAM:

.mmregs

text
LDP #100H

START:

IN 0,06H
NOP
IN 0,04H RPT
#AFFH
NOP
OUT 0,04H
RPT #4FFH
NOP
B START

MODEL GRAPH:

OUTPUT:

WAVEFORM

AMPLITUDE (V)

TIME PERIOD (ms)

INPUT

OUTPUT

RESULT:

Thus the given signal was converted using TMS320C50 DSP Processor.

Ex No:10(b)
Date:

FIR BAND PASS FILTER

AlM:
To design a FIR band pass filter in serial mode.

APPARATUS REQUIRED:
1.System with VI debugger software
2.TMS 320C50 Kit.

3.CRO
ALGORITHM:
1. Start the program.
2. Initialize the C table value.
3. Load the auxillary register with 0200H.
4. Modify the auxillary register zero.
5. Block the C table to the program.
6. Set configuration control bit.
7. Load the data pointer with 0AH.
8. Initialize the analog to digital conversion.
9. Load the auxillary register 1 with 0300 content.
10. Load the accumulator in 8000H.
11. AND the accumulator with OFFFH.
12. Subtract the accumulator content with data 800H.
13. Modify the auxillary register 1.
14. Store the accumulator data in 8000H.
15. Load the auxillary register 1 with content 0333H.
16. Zero the accumulator register.
17. Multiply the accumulator with data.
18. Load the program register, with PM bits to accumulator.
19. Load the auxillary register 1 with content 0300H.
20. Add accumulator content with 800H.
21. Shift the accumulator right 1 bit.
22. Store the accumulator content in 8200 location.
23. Branch the program to step
PROGRAM:

*Approximation type:Window design- Blackmann Window *Filter
type:band Pass Filter

*Filter Order:52

*lower Cutoff frequency in KHZ=3.000000 *upper

Cutoff frequency in KHZ=3.000000

.mmregs

text
B START
CTABLE:
.word 024AH
.word 010FH
.word OFH
.word OFFECH
.word 0C6H
.word 0220H
.word 0312H
.word 02D3H
.word 012FH
.word OFEBDH
.word OFC97H
.word OFBCBH
.word OFCBOH
.word OFE9EH
.word 029H
.word OFFDCH
.word OFD11H
.word 0F884H
.word 0F436H
.word OF2A0H
.word OF58AH
.word OFD12H
.word 075FH
.word 01135H
.word 01732H
.word 01732H
.word 01135H
.word 075FH
.word OFD12H
.word OF58AH
.word OF2A0H
.word 0F436H
.word 0F884H
.word OFD11H
.word OFFDCH
.word 029H
.word OFE9EH
.word OFCBOH
.word OFBCBH
.word OFC97H
.word OFEBDH
.word 012FH
.word 02D3H
.word 0312H
.word 0220H
.word 0C6H

.word OFFECH

.word OFH
.word 010FH
.word 024AH

Move the Filter coefficients
from program memory to data memory

START:

LAR ARO0,#0200H
MAR * ARO

RPT #33H
BLKP CTABLE,*+
SETC CNF

* Input data and perform convolution

ISR:

LDP #0AH

IN 0,06H

IN 0,04H

NOP

NOP

NOP

NOP

LAR AR1#0300H
LACCO

AND #0FFFH

SUB #800H

MAR *AR1
SACL *

LAR AR1#0333H
ZAP

RPT #33H

MACD OFFOOH,*-
APAC

LAR AR1#0300H

SACH * ; give as SACH *, 1 in case of overflow
LACC *

ADD #800H

SFR ; remove if output is less amplitude
SACL *

OuT *4 ;pulse to find sampling frequency
NOP

B ISR

.end

MODEL GRAPH:

TABULATION:

S.No.

Frequency(Hz)

Vout(v)

Vout/Vin

Gainin db=
20log Vout/Vin

RESULT:

Thus the program for designing a FIR band pass filter in serial mode was performed

Ex No:10(c)
Date:

FIR BAND REJECT FILTER

AlM:

To design a FIR band reject filter in serial mode.
APPARATUS REQUIRED:

1.System with VI debugger software

2.TMS 320C50 Kit.

3.CRO
ALGORITHM:
1. Start the program.
2. Initialize the C table value.
3. Load the auxillary register with 0200H.
4. Modify the auxillary register zero.
5. Block the C table to the program.
6. Set configuration control bit.
7. Load the data pointer with 0AH.
8. Initialize the analog to digital conversion.
9. Load the auxillary register 1 with 0300 content.
10. Load the accumulator in 8000H.
11. AND the accumulator with OFFFH.
12. Subtract the accumulator content with data 800H.
13. Modify the auxillary register 1.
14. Store the accumulator data in 8000H.
15. Load the auxillary register 1 with content 0333H.
16. Zero the accumulator register.
17. Multiply the accumulator with data.
18. Load the program register, with PM bits to accumulator.
19. Load the auxillary register 1 with content 0300H.
20. Add accumulator content with 800H.
21. Shift the accumulator right 1 bit.
22. Store the accumulator content in 8200 location.
23. Branch the program to step 7.
PROGRAM:

*Approximation type:Window design- Blackmann Window *Filter
type:band Pass Filter
*Filter Order:52
*lower Cutoff frequency in KHZ=3.000000 *upper
Cutoff frequency in KHZ=5.000000
.mmregs
dext

B START
CTABLE:
.word OFEB9H
.word 014EH
.word OFDA1H
.word 155H
.word OFE1BH
.word 282H
.word OFEAFH
.word 2ACH
.word OFD35H
.word 8DH
.word OF9D9H
.word OFEO7H
.word OF7CCH
.word OFEE2H
.word OFA2FH
.word 4BAH
.word 1AH
.word 25CH
.word 420H
.word 1008H
.word 89H
.word 0D61H
.word OF3F2H
.word 0AF9H
.word ODB7EH
.word 045DFH
.word ODB7EH
.word 0AF9H
.word OF3F2H
.word 0D61H
.word 81H
.word 89H
.word 1008H
.word 420H
.word 25CH
.word 1AH
.word 4BAH
.word OFA2FH
.word OFEE2H
.word OF7CCH
.word OFEO7H
.word OF9D9H
.word 8DH
.word OFD35H
.word 2ACH
.word OFEAFH
.word 282H

.word OFE1BH

*

.word 155H
.word OFDA1H
.word 14EH
.word OFEB9H

* Move the Filter coefficients
from program memory to data memory

START:

LAR ARO0,#0200H
MAR * ARO

RPT #33H
BLKP CTABLE,*+
SETC CNF

* Input data and perform convolution

ISR:

.end

LDP #0AH

IN 0,06H

IN 0,04H

NOP

NOP

NOP

NOP

LAR AR1#0300H

LACCO

AND #0FFFH

SUB #800H

MAR * AR1

SACL *

LAR AR1#0333H

ZAP

RPT #33H

MACD OFFOOH,*-

APAC

LAR AR1#0300H

SACH * ; give as SACH *, 1 in case of overflow
LACC *

ADD #800H

SFR ; remove if output is less amplitude
SACL *

OuT *4 ;pulse to find sampling frequency
NOP

B ISR

MODEL GRAPH:

TABULATION:

S.No. Frequency(Hz) Vout(v) Vout/Vin Gain in db=
20log Vout/Vin

RESULT:

Thus the program for designing a FIR band reject filter in serial mode was performed using
TMS320C50 debugger

